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Summary

Although the Kremser equation has served for many years as a limiting
design and analytical criterion for idealized countercurrent absorption
and extraction systems, it contains a basic flaw which limits its effective-
ness over certain ranges of the operating variables. This defect, which
has not been generally recognized by writers in the field, can be remedied
by assigning separate ranges to a certain operating parameter while
still maintaining the same functional form of the original expression. This
note presents a rational derivation, illustrates the fallacy in the old form,
and demonstrates the use of the new form.

The amount of solute transferred between two immiscible solvent
streams, either gas-liquid or liquid-liquid, in continuous counter-
current contact depends on the relative flow rates of the streams, the
equilibrium distribution of solute between solvent phases, and the
number of contacting stages provided. A compact analytical relation-
ship among these variables was first developed by Kremser (1) and
modified by Souders and Brown (2) for ideal cases where the equi-
librium distribution may be assumed to be linear. Although the
Kremser equation has been widely used for analysis of absorption and
extraction systems, it has shortcomings which restrict its usefulness
over certain ranges of the independent variables. These defects have
been identified by Tiller (3), but none of the principal textbooks in
the field (4-8), all of which postdate Tiller’s article by considerable
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FIG. 1. Schematic diagram and nomenclature for N-stage countercurrent
system.

periods, have included his ideas in their treatments. This note features
a different presentation of some of Tiller’s observations plus a
modified form of the Kremser equation.

Figure 1 depicts a set of N isothermal stages, each assumed to
effect ideal countercurrent mixing between two immiscible solvent
streams whose flow rates are denoted by G and L and whose entering
solute concentrations are given by yr and zr, respectively. Solute
equilibrium is taken to follow the simple distribution law y = mz, so
that the streams leaving from each ideal stage are related by yn, = ma,,
where 7 is an integer variable. It will be assumed, initially, that solute
is being transferred from stream G to stream L, requiring that
Yn-a > My A solute balance around stage n is

G(yn—l - yn) = L(xn - xVH—l) (1)
which may be rearranged to

L
Ynt = Yn = (mx, — MLnyr) (2)
Defining the important parameter L/mG = A and rearranging further
gives
Ayppr ~ (A + Dt + Y01 =0 (3)

This second-order, linear, homogeneous difference equation with con-
stant coefficients has the general solution (9)

Yn = Cl + Z_n (4)
The arbitrary constants C, and C, may be evaluated using the

boundary conditions ¢y, = ¥ and y... = may. Insertion of these results
in Eq. (4) and letting n — N yields

AN+L 4 A -1
Yy = (W) mxp + (W) Yr (5)

and additional algebraic manipulation gives
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FIG. 2. Schematic graphical representations of operating lines, equilibrium
lines, and terminal concentrations for N-stage countercurrent system with
Yn1 > Mma. (arrow indicates direction of increasing stage number).
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yr — mrp AV —1

(6)

Equation (6) is the celebrated Kremser equation. The derivation
above differs somewhat from the originals (I, 2), but it is similar in
that the final algebraic steps are not necessarily related in a rational
manner to the physical situation. An inconsistency arises when the
expression is referred to a limiting condition of infinite stages.

The left-hand side of Eq. (6) may be interpreted as the ratio of

solute recovered in N stages to that which would be recovered by an

infinite number of stages, or

_Yyr—yv _ yr—yn _ AVV1 -4
Ew(A>1)—yF_yw—yF_me— yrzEe—

where E,(A > 1) is defined as the removal efficiency (the A > 1
restriction will be explained presently). The validity of this interpreta-
tion can be seen from Fig. 2a, a plot of ¥y vs 2 which shows sche-
matically the relationship among the variables in Eq. (6). The operat-
ing line, whose equation is

Yot = éxn + (yN — éw) ®

if obtained from a component balance around the right-hand end of
the N stage system (the left-hand end furnishes an equivalent expres-
sion which would serve just as well), relates the solute compositions

()
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Yn-1 and z, of passing solvent streams at any interstage point.* It has
a slope of L/G and terminates on the vertical and horizontal projec-
tions of the terminal concentrations zr and yr, respectively. Figure 2a
shows two operating lines, one for finite N and the other for N = oo,
each having the same slope but different positions. Sequential stages
are represented by rectangular steps between operating and equi-
librium line, the terminal steps coinciding with the ends of the operat-
ing line. A few illustrative stages are drawn for the N = oo line only.
This particular line forms a “pinch point” with the equilibrium line
at zp, implying that an infinite number of stages would be required to
reach that point. The relationship among the ordinates of Fig. 2 and
the ratio of removal factors given by Eq. (7) is readily seen and the
equivalence of mzr and ¥y, is certainly valid.

For the above case the ratio of the slopes of the operating and
equilibrium lines, L/mG = A, is greater than unity. If this were the
only case, Eq. (7) and the interpretation given would be adequate.
However, the physical situation for 4 < 1 is quite different, as Fig. 2b
shows, and so is the corresponding equation. The “pinch point” for
N = o« is now at the high concentration side of the diagram and .,
is no longer equivalent to mzr. Expressions for ¥y — y, and the cor-
responding E, (A < 1) are easily obtained from the geometry of the
diagram. The slope of the N = oo operating line is

(ye/m) —axr G
which means yr — ¥y, = 4 (yr — mz;), so that

Yr — Yu L_mA

_Yr—yv _ _yr—yy _ 1- A%
Bl <D=y, ~ Al —man) 1A 9

The Kremser equation, Eq. (6), has always been applied without
restriction on the values of 4, a procedure which is inconsistent since
for A > 1 the efficiency E, is referred to a y, which is asymptotically
realizable, whereas for 4 < 1 it is not. Use of Egs. (7) and (9) for
the two ranges of A removes this inconsistency.

As was mentioned above, the algebraic steps transforming Eq. (5)
into Eq. (6) are purely ad hoc, and it is not inconceivable that

* This is a first-order, nonhomogeneous linear difference equation whose solu-
tion, with appropriate boundary conditions, also yields Eq. (5) but the treatment
is more involved than that based on the second-order homogeneous form, Eq.
(1), as given above.
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Kremser might have derived Eq. (9) instead of Eq. (7), so that the
asymmetry would then have favored the A < 1 cases. A more rational
derivation follows by applying a limiting process to Eq. (5), or

. . ANt 4 A—1
Yy = Nll.nl Yn = 1\}1—1?1: [(AN+1 — 1>mx"' + (AN-H — 1) yF'] (10)
The result depends on the range of 4, hence
YulA > 1) = may (11a)

Yold < 1) = Amzr — (A — Dyr (11b)

If each of these y,'s is substituted separately into E, = (yr — yw)/
(Yr — Y), also using Eq. (5) for the yy in each case, the resulting
expressions simplify to

AN+1 —_ A
Ew(A > 1) = m (123)
and
1— AV
E,o(A < 1) = T—_—sz (12}3)

which are the same as Eq. (7) and (9). Hence, derivation through a
limiting process leads naturally to two equations for the separate
ranges of A, without resorting to geometric interpretation, whereas the
purely algebraic derivation does not. It should be noted that for
A =1, Eqs. (12a) and (12b) are both indeterminate, but application
of L'Hopital’s rule to either gives

N
T N+1
Also, Egs. (12a) and (12b) are interconvertible by exchanging 1/A4
for A. This property suggests combining Eqs. (12a), (12b), and (13)
into the single expression

atl — o _fA A2
A1 2T 1/4,4< 1

which preserves the form of the original Kremser equation but includes
the required symmetry of referring all cases to a bona fide Y.

An equally important set of conditions occurs when the direction of
mass transfer is reversed, so that solute now moves from stream L to
stream @, thus requiring that &, > Yu-1/m. The two cases representing

E,(A=1) (13)

E, = (14)
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FIG. 3. Schematic graphical representations of operating lines, equilibrium
lines, and terminal concentrations for N-stage countercurrent system with
Zn > Yns/m (arrow indicates direction of increasing stage number).

this situation are shown schematically in Figs. 3a and 3b. For develop-
ing the analytical expressions, Fig. 1 is altered by exchanging all the
2's and y’s, as well as the L and G, but leaving stage numbers and
composition subsecripts in place. The solute balance around stage n
is then

G(yn — ?/n-&—l) = L(xn~—1 - xn) (15)
and the resulting difference equation
Tnyl — (A + l)xn + Axn—l =0 (16)

has the general solution
z, = Cy + C,A" a7

When arbitrary constants Cs and C, are evaluated, using the boundary
conditions x, — xy and Zx,, = Yr/m, the complete solution to Eq. (16)
becomes, letting n— N,

AV - 1 Y ANTL _ AN
o = (m) m T (7_+TT> & (18)

Removal efficiency is analogously defined as B, = (x5 — zy) /(xr —
%), and the x,, quantities are evaluated by lim v, 2y, giving

Tald > 1) = %Z—; + /—1 (A4 — Vs (19a)
24 < 1) = L& (19b)

3|
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TABLE 1

Comparison of Kremser Equation and Eq. (14)

Relative fraction solute remaining

Operating parameters (1-—-E,)
A a N Eq. (6) Eq. (14)
0.5 2.0 2 0.57 0.14
4 0.52 0.03
6 0.50 0.007
10 0.50 0.0005
1.5 1.5 2 0.20 0.20
4 0.075 0.075
6 0.03 0.03
10 0.006 0.006

Inserting these and Eq. (18) into E, again gives Eqs. (12a) and
(12b). Therefore Eq. (14) is applicable to all cases, regardless of the
direction of solute flow, with the understanding that E, refers to y’s
when Yy, > mz and to 2’s when Zn-, > Yn/m.

In addition to its elegance and rational derivation, Eq. (14) pro-
vides an improved practical basis for design ecriteria. Table 1 lists
some values of 1 — E, the fraction of solute remaining relative to
what would remain for N = o, calculated for various 4’s and N’s.
As shown, the old Kremser expression, Eq. (6), is inadequate for
A < 1, making little or no distinction among the various N values,
particularly for large N, whereas Eq. (14) weights them correctly.
For A > 1 both equations are the same and, of course, give the same
results.

Graphical solutions of Eq. (6) constructed by previous writers use
either log (1 — E,) vs N with A as parameter (7, 10) or log (1 — E,,)
vs A with N as parameter (4). Such plots will still serve for Eq. (14),
merely by using e instead of A, and, since « > 1, the portions of the
graphs containing A < 1 may be excluded or ignored.
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